

Journal of the Japanese Society for Sonic Arts, Vol.1 No.1 pp.17–21

User-Centered Design

ON CONCEPTUAL MISFITS IN COMPUTER MUSIC PROGRAMMING

Hiroki NISHINO
NUS Graduate School for Integrative Sciences & Engineering

National University of Singapore

ABSTRACT

How usability problems in a domain-specific lan-
guage(DSL) can be assessed is one of the largely
unexplored issues in user-centered design. It has been
frequently discussed that abstraction is an essential
skill in software design yet inappropriate abstraction
can cause significant usability problems. Similarly,
the misfits between the users’ conceptualization and
the representations implemented within a system are
also considered to cause usability problems. We apply
such perspectives to this issue of usability problems in
DSL design, with an additional consideration on the
abstraction layers. We describe an example of conceptual
misfits in computer music programming, partly based
on our previous publication. Such an assessment can be
beneficial for user-centered design of DSLs.

1. INTRODUCTION

While the interests in research of computer music pro-
gramming languages have been mostly from researchers
and practitioners of computer music, it is also recently
drawing attention as a research topic in the context
of human-computer interaction(HCI) [1, 3]. End-user
programming activity is becoming more popular than
ever in many professional domains.

Some end-user programmers can be categorized as expert
end-users, who are expert in their own problem domain
but still novice in computing [3]. Blackwell and his
colleagues discuss that such expert end-users should be
distinguished from both expert and novice programmers
and the research on first year computer science students
or the research on‘natural’programming languages
by studying kids before learning any other language
”may not be directly relevant to needs of expert end-user
programmers” [3]. Computer music programming is
ideal for such research in expert end-user programming

in that computer musicians can be considered as novice
programmers but with their own expertise in computer
music. Moreover, the expertise knowledge that computer
musicians possess is highly organized as an academic
research field and is shared by computer musicians, when
compared to more general end-user programming activity.

However, how usability problems in a DSL can be
assessed is still largely unexplored yet is an issue of
significant importance towards user-centered design. In
this paper, we discuss this issue of usability problems
in computer music programing language design. We
combine several perspectives provided by the previous
research with an additional consideration on the abstrac-
tion layers both in the software design and the users’
conceptualization, to assess how usability problems can
be attributed to conceptual misfits between expertise
knowledge and language design.

The discussion includes the materials that overlap with
our previous publication [12], yet some additional and de-
tailed discussions are also described.

2. RELATED WORK

In this section, we briefly review some previous
research related to our discussion in the later section.
Blackwell and his colleagues discuss how inappropriate
abstraction in software design can cause serious usability
problems from many aspects in [4]. As Blackwell
describes in the paper, ”even where developers are well
motivated and sympathetic to user concerns, incompati-
ble abstractions are a constant challenge to user centered
design”; thus, avoiding such ’incompatible abstractions’
is one of major concerns in software design in general.

Such a view that problematic abstractions in software
design can cause significant issues in a computer system
is not limited to the context of end-user computing

– 17–

Proceedings of Asia Computer Music Project 2011, Tokyo

- 15 -

 1 / 4

Journal of the Japanese Society for Sonic Arts, Vol.1 No.1 pp.17–21

and widely discussed as point of interest in software
engineering in general. Lee’s Computing Needs Time [11]
provides a suggestive perspective to discuss DSL design,
even though what he argues is not in the context of HCI,
but mainly in one of Cyber-Physical Systems.

Lee attributes the loss of repeatability and predictability
in today’s computer systems to the abstraction layers
of computing, since the passage of time is abstracted
away in such abstraction layers. This view, that signif-
icant problems in software design can find root in the
abstraction layers in system design that take away the
controllability and the accessibility that are necessary for
some tasks to be implemented in the higher level layers,
is also applicable to DSL design, since a DSL involves
higher level abstractions for its own application domain
than general purpose programming languages.

Blandford and her colleagues are developing usability
evaluation framework called CASSM (Concept-based
Analysis of Surface and Structural Misfits, ”the purpose
of which is in the identification of misfits between the
way the user thinks and the representation implemented
within the system” [6]. As Blandford discusses in [7],
”the majority of HCI research and design has ignored
this issue” of this notion of misfits, yet such conceptual
misfits that cause usability problems can be considered
to provide good opportunity for user-centered design and
redesign.

Blandford describes two types of conceptual misfits as
following. ”Some misfits are surface-level - for example,
users may work with concepts that are not directly
represented within the system; conversely, users may be
required to discover and utilize system concepts that are
irrelevant to their conceptual models. Other misfits are
structural, emerging only when the user manipulates the
structures of some representation and finds that changes
that are conceptually simple, in practice difficult to
achieve”. [8]

3. CONCEPTUAL MISFITS IN A DSL DESIGN

Programmers are considered ”to use knowledge from at
least two domains, the application (or problem) domain
and the computing domain, between which they establish
a mapping” [10, p.22]. The knowledge from the appli-
cation domain is also utilized in comprehension of the
existing programs [10, pp.75-103] and software mainte-
nance can be conceptualized ”as interlinking comprehen-
sion and modification” [14]; thus, facilitating mapping be-

tween these two domains is of significant importance for
improving the usability in many different phases of pro-
gramming activity. Hence, the conceptual misfits between
the representations of the expertise knowledge (in prob-
lem domain) and the programming language design (in
computing domain) is a significant factor to consider the
usability of DSLs.

We combine the three perspectives described in the pre-
vious sections so as to discuss such conceptual misfits in
DSL design. We consider the following situations as the
causes of such conceptual misfits; a) The abstraction lay-
ers in DSL can make some entity in a lower-level less ac-
cessible. Yet, the counterpart of this entity in the problem
domain is involved in problem solving activity. b) An en-
tity in the users’ conceptualization, which is involved in
problem solving, does not have a counterpart in the DSL
design. c) An entity in the DSL design does not have a
counterpart in the users’ conceptualization, but must be
involved in problem solving.

All three situations can cause conceptual misfits and in-
volve ’incompatible abstractions’ in the abstraction layers
applied to the DSL design. We describe a simple case
study in the next section of such an approach.

4. A CASE STUDY IN COMPUTER MUSIC

We describe a simple case study in computer music,
taking ”Single-Sample Feedback” in SuperCollider [15]
as the example of such conceptual misfits. Single-sample
feedback is a very simple task as a concept but difficult to
achieve in SuperCollider. This usability problem is lying
in the representations implemented within SuperCollider.
Thus, it can be considered a good example of a structural
misfit in computer programming.

4.1. Musical Time-Scale and Synthesis Framework

Roads classify musical time-scales in computer music
into 9 different scales in [13, p.3]. Sorting from the longer
time-scale to shorter ones, Roads’s musical time-scales
are classified as infinite, supra, macro, meso, sound ob-
ject, micro, sample, subsample and infinitesimal.

We briefly describe only three of them, since the other
time-scales are not involved in the following discussion.
In Roads’s definition, sound-object time-scale corre-
sponds to ”the traditional concept of note”, microsound
time-scale to ”sound particles on a time scale that extends
down to the threshold of auditory perception (measured in

– 18–

Proceedings of Asia Computer Music Project 2011, Tokyo

- 16 -

 2 / 4

Journal of the Japanese Society for Sonic Arts, Vol.1 No.1 pp.17–21

thousandths of a second or milliseconds)”, such as grains
in granular synthesis. Sample time-scale corresponds to
each sample in digital signal. [13]

Figure 1. Roads’s 9 musical time-scales [13, p.3] & the
abstracion layers in SuperCollider

The abstraction applied to SuperCollider’s synthesis
framework are quite typical as a computer music pro-
gramming language. A synth object in SuperCollider
correspond to the traditional concept of note. Super-
Collider perform DSP, not sample-by-sample, but by
the blocks of samples as in many other computer music
environments. Thus, the representations of musical
time-scales in SuperCollider’s synthesis framework can
be considered to be conceptually organized as synth -
sample-block - sample.

Figure 1 shows musical-times scale by Roads (on
the left) as the users’ conceptualization in the expertise
knowledge and in SuperCollider (on the right) as the
representations implemented within the system in its
abstraction layers.

4.2. Single-Sample Feedback in SuperCollider

Single-sample Feedback is one of the elementary
techniques involved in many different signal processing
techiniques from the simplest IIR filtering to more ad-
vanced techniques such as physical modeling synthesis.
Yet, many computer music programming languages in-
volve difficulty in programming single-sample feedback;
it is even impossible in some environments.

While many computer music programming languages
provide built-in objects for synthesis techniques that
involve single-sample feedback, such a solution can be
sometimes even almost meaningless when the purpose of
end-user programming activity is in exploratory design or
exploratory understanding [5, pp.103-104]. For instance,
if a user wants to experiment a new physical model
for synthesis that involves single-sample feedback by
programming, ready-made built-in objects hardly help
such programming activity.

Figure 2. One Pole Filter Algorithm

SuperCollider also has a usability problem in single-
sample feedback. We take an example of one-pole filter,
the algorithm of which is shown in Figure 2. While it is
still possible to implement in SuperCollider, it involves
unnecessary difficulty in programming. As the code
shown in Figure 3, the code is a lot more complicated,
compared to the simple algorithm in Figure 2.

How this usability problem can be assessed? In per-
spective of conceptual misfits, as shown Figure 1, each
sample in SuperCollider is directly inaccessible while the
conceptualization of the one pole filter algorithm involves
the direct access in sample time-scale. This conceptual
misfit in accessibility causes one of the usability problems
in the code that the user must write the incoming signal
once into a buffer to access each sample and then write it
back to another buffer again after applying one-pole filter
algorithm.

Figure 3. One Pole Filter Example in SuperCollider

The other gap found in Figure 1 is that there is no coun-
terpart in the conceptualization of musical time-scales
to sample-block in SuperCollider. This gap is likely the
cause of this usability problem (the user must understand
the concept of ’sample-block’ and write a loop to process
each sample one by one). It should be also noted that
this concept of ’sample-block’ is normally hidden to the
user. The user is expected to have the knowledge how

– 19–

Proceedings of Asia Computer Music Project 2011, Tokyo

- 17 -

 3 / 4

Journal of the Japanese Society for Sonic Arts, Vol.1 No.1 pp.17–21

SuperCollider’s synthesis framework is implemented to
write this code while it does not appear in many other
programs.

Figure 4. A Proposed Redesign

As above, we assessed this usability problem in Super-
Collider as caused by two conceptual misfits. One is the
lack of accessibility to samples and the other is the incom-
patible abstraction of ’sample block’ in SuperCollider. If
these two conceptual misfits are the causes of usability
problems, recovering the accessibility to each sample and
removal of the ’sample-block’ abstraction should improve
the usability in SuperCollider. One experimental redesign
for this problem is to perform DSP sample-by-sample and
make each sample directly accessible. Figure 4 shows a
sample code of this proposed design. Clearly, the code is
much terser and simpler than the original.

4.3. Potential Usability Problems

The other conceptual misfits that can be suggested from
Figure 1 is that there is no counterpart to micro time-scale
in SuperCollider. As shown, there is no counterpart of
micro time-scale in the representation of time-scale in Su-
perCollider’s abstraction layers. This misfit is not lim-
ited to the design of SuperCollider, but frequently seen in
many computer music programming languages. As ex-
pected from this misfit, how to model microsound syn-
thesis techniques, which is conceptualized as a technique
in this micro time-scale, is one of the major concerns in
synthesis framework design and implementation. Some
previous works discuss this difficulty as in [2, 9].

5. CONCLUSION

We have described our approach that considers the ab-
straction layers both in the user’s conceptualization and
the language design, combining three perspectives pro-
posed by the previous research. Even though our approach
is still quite simple and just assesses conceptual misfits
based on the abstraction layers, such an assessment can be
a beneficial ”broad-brush” analysis for the usability prob-

lems in language design, which can be considered impor-
tant for the further improvement of usability in DSLs.

6. REFERENCES

[1] Aarron, S., Blackwell, A.F., Hoadley, R. & Regan,
T. ”A Principled Approach to Developing New Lan-
guages for Live Coding,” in Proc of NIME’11, 2011

[2] Bencina, R. ”Implementing Granular Synthesis”, Au-
dio Anecdotes III, A K Peters, Ltd., 2007

[3] Blackwell, A.F., & Collins, N. ”The Program-
ming Language as Musical Instrument”, in Proc of
PPIG’05, 2005

[4] Blackwell, A.F., Church, C. & Green, T.R.G. ”The
Abstract is ’an Enemy’: Alternative Perspectives to
Computational Thinking”, in Proc of PPIG’08, 2008

[5] Blackwell, A.F. & Green, T.R.G., ”Notational Sys-
tems - the Cognitive Dimensions of Notation Frame-
work”, in HCI Models, Theories and Frameworks:
Toward a Multidisciplinary Science, Morgan Kauf-
mann, 2003

[6] Blandford, A., Green, T.R.G., Furniss, D. & Makri, S.
”Evaluating System Utility and Conceptual Fit Using
CASSM”, in Intl Journal of Human-Computer Stud-
ies, Vol.66, pp.393-409

[7] Blandford, A. & Green, T.R.G. ”Ontological Sketch
Models of Schedule Organisers”, in Proc of a Work-
shop on Understanding Work and Designing Arte-
facts, 1998

[8] Blandford, A., Green, T.R.G. & Connell I. ”Formal-
ising an Understanding of User-System Misfits”, in
Proc of EHCI-DSVIS’04, 2004

[9] Brandt, E. ”Implementing Temporal Constructors for
Music Programming”, in Proc of ICMC’01, 2001

[10] Détienne, F. Software Design - Cognitive Aspects,
Springer Verlag, 2001

[11] Lee, E. ”Computing Needs Time”, Communications
of the ACM, Vol.52, No.5, 2009

[12] Nishino, H. ”Misfits in Abstractions: Towards User
Centered Design in Domain-Specific Languages for
End-User Programming”, in Proc of SPLASH’11,
2011

[13] Roads, C. Microsound, The MIT Press, 2004
[14] Shaft, T.M. & Vessey, I. ”The Role of Cognitive Fit

in the Relationship between Software Comprehen-
sion and Modification”, MIS Quarterly, Vol.30, No.1,
pp29-55, 2006

[15] Wilson, S. et al. The SuperCollider Book, The MIT
Press, 2011

– 20–

Proceedings of Asia Computer Music Project 2011, Tokyo

- 18 -

Powered by TCPDF (www.tcpdf.org)

 4 / 4

http://www.tcpdf.org

